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The electrical impedance was first defined by Heaviside in 1884, and the analogy of the acoustical imped-
ance was made by Webster in 1919. However, it can be shown that Webster did not draw a full analogy with
the electromagnetic potential, the potential energy per unit charge. This paper shows that the analogous
“acoustical potential,” the potential energy per unit displacement of fluid, corresponds to the wave function �

of the reduced Webster equation, which is of Klein-Gordon form. The wave function is found to obey all of
Dirichlet, Von Neumann, and mixed �Robins� boundary conditions, and the latter give rise to resonance
phenomena that are not elucidated by Webster’s analysis. It is shown that the exact Heaviside analogy yields
a complete analytic account of the one-dimensional input impedance, that accounts for both plane- and
dispersive-wave propagation both at the origin and throughout the duct.
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I. INTRODUCTION

Although the electric telegraph was invented by Morse in
1838, and the first commercial telegraph line was erected in
1844 between New York and Washington, much was un-
known at the time about transmission line theory and the
propagation of signals along wires. It was Kirchoff who in-
troduced circuit theory in 1845, enabling the analysis of elec-
trical transients by Kelvin �1847�, Helmholz �1851�, and
Maxwell �1865�. Nevertheless, the theory could not account
for the observed decay in signal strength with distance,
which limited the success of the first transatlantic cable, laid
in 1858. It was eventually Heaviside who formulated the
complete theory of the “distortionless line” and introduced
the general concept of electrical impedance, in 1884 �see �1�
for a full historical review�. Although these advances were
noted by Rayleigh in the second edition of The Theory of
Sound �1894� �2�, the analogy of an acoustical impedance
was not drawn until 1919, by Webster �3�.

The impedance has since become one of the most impor-
tant quantities in acoustics. In particular, the input impedance
identifies the resonances and antiresonances of ducts and
pipes and can be used to reconstruct the shape of an object.
In this paper, however, it is shown that the definition made
by Webster is not the most complete possible, but that an
exact analogy can be drawn by examining solutions of the
acoustical Klein-Gordon equation.

II. THE ACOUSTICAL IMPEDANCE

In an ac circuit driven by a seat of emf �, the complex
electrical impedance, is

Z =
�

I
, �1�

where I is the alternating current. The emf �=dW /dq, is
defined in terms of the difference in electromagnetic poten-

tial that holds between the terminals of the seat; that is, by
the amount of work dW done in moving unit charge dq from
low to high potential. The electromagnetic potential is, of
course, defined as the potential energy per unit charge in
order for the quantity to be independent of an arbitrary
charge magnitude.

For a plane sound wave in a pipe of cross-sectional area
S, Webster �3� adopted an electrical analogy and, likening
particle displacement � to charge q, defined the acoustical
impedance as

Z =
p

u
, �2�

with p�x , t� the excess pressure and u�x , t�=Sv�x , t� the
“volume velocity,” where v�x , t�=���x , t� /�t is the particle
velocity.

Since p2 is proportional to the potential energy per unit
volume dV=Sd� of fluid �4�; that is, to the potential energy
density, it can immediately be seen that, unlike the electrical
quantities, neither the “acoustical emf” nor the impedance
are stated in terms of unit “charge.” This is to say that the
Webster derivations do not invoke the important concept of
the electromagnetic potential, which we note would have an
acoustical analogy in the potential energy per unit displace-
ment of fluid, proportional not to p2 but to p2S. Nevertheless,
the comparison of acoustical pressure to electrical emf has
led to the definition of quantities such as the specific acoustic
impedance z=SZ, and the mechanical impedance Zr=zS �5�,
that have become among the most fundamental in acoustics.

In the plane-wave framework adopted by Webster, and
denoting an incident wave traveling in the positive x direc-
tion as pi=Aei��t−kx� and the wave reflected back from a
change in area at some point x=0 as pr=Bei��t+kx�, the com-
plex acoustic impedance is

Z =
pi + pr

ui + ur
. �3�

For propagation along a uniform and infinitely long pipe,
so that there is no reflected wave, application of the Euler
equation
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�v�x,t�
�t

= −
1

�

�p�x,t�
�x

�4�

yields the characteristic impedance Z=�c /S, with � the equi-
librium density of the medium and c the speed of sound.
More generally, for a varying cross section, it defines the
“input” impedance at the origin in terms of the reflection
coefficient R=B /A, as

Z0 =
�c

S0

1 + R

1 − R
, �5�

where R is real and frequency independent in the case of a
single step change in area, but otherwise generally complex
and a function of wave number, k=� /c.

Equations �3� and �5� are among the most fundamental in
duct acoustics. When analyzed with reference to Von Neu-
mann or Dirichlet boundary conditions, the solutions give
readily interpreted information about the resonance and an-
tiresonance characteristics of a test object. For the Dirichlet
condition v�0, t�=0 on the particle velocity, for example, cor-
responding to a high-impedance source �rigid termination�,
the resonances are identified with the poles of the magnitude
of the input impedance. Conversely, for the Dirichlet condi-
tion p�0, t�=0 on the pressure, corresponding to an ideal,
radiationless, open end, the resonances are identified with the
zeroes. The Euler and continuity equations yield the corre-
sponding Neumann conditions; namely, ��p�x , t� /�x=0�x=0

and ��v�x , t� /�x=0�x=0, respectively.
It may be noted, however, that the derivation of Eq. �5�

assumes strictly plane-wave propagation both at the input
boundary and within the duct, whereas it is known that pres-
sure fluctuations with change in cross section are accompa-
nied by swelling wave fronts and wave dispersions that give
rise to phase velocity and resonance shifts �4,6�, even in the
absence of circumferential modes �7�. It can now be shown
that a dispersive rather than a strictly plane-wave analysis
does, in fact, lead to a definition of the impedance that
is more precisely analogous to the electrical theory of Heavi-
side, and that the theory accounts for frequency-dependent
boundary phenomena not elucidated by Webster’s analysis
of 1919.

It was first noted by Salmon in 1946 �8� that, for one-
dimensional wave propagation in the linear, nonviscous, and
adiabatic approximations, the excess pressure and area func-
tions of the Webster equation

�2p�x,t�
�t2 = c2� �2p�x,t�

�x2 −
1

S�x�
dS�x�

dx

�p�x,t�
dx

� �6�

are not strictly independent variables. Whereas the potential
energy per unit volume of fluid fluctuates significantly with
change in cross section, Salmon noted that, in a propagating
wave, the potential energy per unit length d� must be con-
served over a cycle �; that is,

�p2�x,t��� S�x� = const. �7�

Defining a slowly varying acoustical “wave function”
��x , t�, as

��x,t� = p�x,t�	S�x� , �8�

thus yields the simplified or “reduced” form of the Webster
equation

�2��x,t�
�t2 = c2� �2��x,t�

�x2 − U�x���x,t�� , �9�

of Klein-Gordon form �4,9�. Equation �9� has been shown
�10� to apply to one-dimensional wave propagation in gen-
eral and, although the time dependencies differ, it has been
noted �8,10� that the time-independent part, namely,

�2��x�
�x2 + �k2 − U�x����x� = 0, �10�

for eigenfunctions ��x�, is mathematically analogous to that
of the Schrödinger equation. For plane-wave propagation, an
acoustical “potential function” is defined as a scaled curva-
ture of the duct; namely, as

U�x� =
d2	S�x�/dx2

	S�x�
. �11�

Thus, the descriptive formalism of modern wave mechanics
can be applied to the macroscopic physical system.

For complex amplitude coefficients A�k� and B�k�, and

setting k̂�x�w	k2−U�x�, it has been shown �11� that for
U�x� approximately constant over several wavelengths, such
that

dk̂�x�
dx

	 �k̂�x��2, �12�

then the harmonic solutions of Eq. �9� can be written

��x,t� 
 A�k�ei��t−k̂�x�x� + B�k�ei��t+k̂�x�x�, �13�

or, more precisely, within the WKB approximation �12�, as

��x,t� = A�k�ei��t−�x0

x k̂�x��dx�� + B�k�ei��t+�x0

x k̂�x��dx��. �14�

Such dispersive “wave function” solutions of the reduced
Webster equation elucidate significant variations in phase ve-
locity from predictable phenomena, and previous work �4,6�
has considered in detail those due to piecewise constant po-
tential functions, for which U�x�=U0.

It is now possible to present a wave-mechanical account
of the acoustical impedance. We have previously noted that
the Webster definition did not invoke the important concept
of the electromagnetic potential, which would have an acous-
tical analogue in the potential energy per unit displacement
of fluid. This “acoustical potential” �quite distinct from the
potential function U�x�� would be proportional not to p2, but
to p2S. Given the insight of Salmon �Eq. �7��, it is immedi-
ately obvious that such a quantity corresponds to the squared
wave function �2. The acoustic impedance in the more exact
Heaviside analogy is, thus, immediately defined as
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ZH =
�

u
, �15�

so that Z=ZH /	S �cf. �2��. The implications for duct reso-
nance can now be examined.

III. THE HEAVISIDE INPUT IMPEDANCE

We begin by noting that the general harmonic solutions at
the origin are given in terms of wave functions

��0,t� = A�k��1 + R�k��ei�t, �16�

where R�k�=B�k� /A�k� is the reflection coefficient due to an
arbitrary sequence of potential functions �the absence of
bound states is assumed�, and may include the effects of a
radiation impedance �4�. The amplitude A�k� may be found
as follows. Since from �8� it is the case that

�p�x,t�
�x

=
1

	S�x�
���x,t�

�x
−

1

2�S�x��3/2

dS�x�
dx

��x,t� ,

�17�

the Euler equation �4� states that

u�x,t� =
1

�
	S�x� � 1

2S�x�
dS�x�

dx
��x,t� −

���x,t�
�x

dt .

�18�

The assumption of a piecewise constant or slowly varying
potential function at the origin allows the substitution of Eq.
�14� �or �13�� into �18�. The coefficient A�k� can then be
found by setting the condition of a high-impedance harmonic
source, for which

u�0,t� = ei�t. �19�

Evaluation of Eq. �18� at the origin then yields

A�k� =
��

	S0

1

k̂0 1

1 − R�k� −
i
�1 + R�k��

k̂0
� , �20�

where

k̂0 � k̂�0� � 	k2 − U�0� �21�

and


 = � 1

2S0

dS�x�
dx

�
x=0

. �22�

The “Heaviside” input impedance is finally obtained from
Eqs. �15�, �16�, and �19�, as

ZH0
=

��

	S0

1

k̂0

1 + R�k�

1 − R�k� −
i
�1 + R�k��

k̂0

, �23�

and is directly proportional to the measurable pressure �cf.
�8��, so that Z0=ZH0

/	S0.
Recent work �13,14� has suggested that the condition of a

high-impedance source can be met for experimental mea-

surements up to around 5 kHz. At higher frequencies, sepa-
rate measurements of velocity �15,16� may be required and
calibrated terms should be introduced into Eq. �20�.

Although the effects on the impedance are complicated
when there is both a dispersion and a gradient at the input,
two special cases may usefully be examined.

�1� 
=0
If the initial gradient is zero, dS�x� /dx=0 at x=0, then

A�k� =
��

	S0

1

k̂0

� 1

1 − R�k�� , �24�

and Eq. �23� reduces to

ZH0
=

��

	S0

1

k̂0

1 + R�k�
1 − R�k�

. �25�

For U�0�=U0, the term k̂0 describes the effects of a disper-
sion due to a section of catenoidal �U0�0� or cosinusoidal
�U0�0� horn �4�, and for known �, �, and S0, the value
of U0 may be recovered in the high-frequency limit, as
R�k�→0.

�2� 
�0, k̂0=k
Since U�0�=0, the term 
 describes the initial gradient or

angle of a conical duct, with linear radius function r�x�:

r�x� = r�0��1 + 
x� . �26�

The input impedance

Z0 =
�c

S0

1 + R�k�

1 − R�k� −
i
�1 + R�k��

k

�27�

demonstrates frequency-dependent departures from the
plane-wave solution �5�.

It may be noted that there are no corrections for the ideal
radiationless case R=−1, since ��0, t�=0 in Eq. �17�, and
the boundary condition is purely Dirichlet. In fact, Eq. �23�
states that for an ideal open input, that is, at a common pres-
sure node, neither wave dispersion nor duct gradient affect
the impedance which remains as Z=0, despite the singularity
in the plane-wave potential function �10�. A similiar phenom-
enon has previously been observed for eigenvalue perturba-
tions at nodes �6�.

In the context of the inverse problem of reconstructing an
unknown potential function U�x� from acoustic measure-
ments, Aktosun �17� has indicated that 
 can be identified in
the high-frequency limit, as 
= i limk→�k���k�+1��, where
��k�=Z0S0 / ��c�. When 
 is known, R�k� is determined as

R�k� =
��k��1 − i
/k� − 1

��k��1 + i
/k� + 1
. �28�

From R�k�, a unique potential function can be reconstructed
according to standard methods �18,19�. Further, when S�0�
and �dS�x� /dx�x=0 are individually specified, the area func-
tion can also be obtained. Thus, the results presented here are
essential in the noninvasive measurement of acoustical ducts,
such as the vocal tract, that cannot be assumed uniform at the
source of excitation. Nevertheless, the accuracy of the
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formulae will be limited in regions of rapid flare �of more
significance in wide-bore musical and engineering acoustics
applications� due to the one-dimensional approximation and
the absence of terms accounting for higher-order duct modes.

The foregoing analysis constitutes a full analogy with the
electrical transmission line theory of Heaviside. It is particu-
larly remarkable that the analysis invokes a mixed �Robins�
boundary condition on the wave function, of the form

� ���x,t�
�x

�
x=0

− 
��0,t� = 0, �29�

whereas only Dirichlet or Neumann conditions can usually
be set on the excess pressure �or velocity�. Further, the de-
parture from purely Neumann conditions is described by the
constant 
, and it is notable that any set of area functions
sharing a value of 
, and corresponding to a single potential
function, will have a completely identical spectrum, up to a
constant amplitude factor. This finding extends previous ac-
counts of the phenomenon of nonunique “many-to-one map-
pings” between the shape of an object and its peak resonance
frequencies �cf. �20��.

IV. CONCLUSIONS

It is widely considered that the definition of the acoustical
impedance, first made by Webster in 1919 and having since
stood in the literature, exists in precise analogy with the elec-
trical impedance, originally introduced by Heaviside in 1884.
In particular, the excess pressure is compared to the electrical
emf. However, this paper points out that the exact analogy is
made by defining an acoustical potential, as the potential
energy per unit displacement of fluid. It is shown that such a
quantity corresponds not to the pressure, but to the wave
function � of the reduced Webster equation. Since the wave
function obeys mixed as well as Dirichlet and Neumann
boundary conditions, wave function solutions of the Webster
equation are found to yield a full and complete analysis of
the one-dimensional input impedance that accounts for
frequency-dependent boundary phenomena not elucidated by
standard analyses.
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